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1. Introduction and conclusion

The AdS-CFT correspondence gives rise to many insights to the conformal field theories [1 –

3]. The most successful example is the relation between the string theory on AdS5×S5 and

the 4-dim N = 4 supersymmetric Yang-Mills theories. The original Janus solution in ref. [4]

is a 1-parameter family of dilatonic deformations of AdS5 space without supersymmetry.

This solution turns out to be stable under a large class of perturbations [4 – 6] and some

holographic properties have been explored in refs. [4, 5, 7] The Janus solution is made of

two Minkowski spaces joined along an interface so that the dilaton field interpolates two

asymptotic values. The CFT dual field theory is suggested to be the deformation of the

Yang-Mills theory where the coupling constant changes from one region to another region

at 2-dim interface [4, 8].

Further works revealed that one can have supersymmetric Janus geometries with the

various supersymmetris and internal symmetries [8 – 10]. Starting from the 16 supersym-

metric Yang-Mills theory, the various deformations of 0, 2, 4, 8 supersymmetries have been

found [11]. Especially, the 16 supersymmetric Janus geometries have been found [12 – 14].

Also other aspects of the Janus solutions have been discussed in ref. [15 – 19].
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Instead of following the detail of the frame work given in ref. [11] where the 6-dim sym-

plectic Majorana fermions are used extensively, we start from the 10-dim supersymmetric

Yang-Mills theory where the discussions are quite simple. In this work, we give a simple

derivation of the deformation of the 16 supersymmetric Yang-Mills theory.

One could ask whether there is a supersymmetric deformation of the Yang-Mills theory

where the coupling constant depends on time too. Indeed there have been several works

along this direction [20 – 23]. To maintain some supersymmetry, the time dependency of

the coupling constant should accompany the spatial dependency, say e2(t + x). It turns

out that there is no need to correct the Lagrangian or the supersymmetric transformation

besides reducing the supersymmetry by 1/2 by imposing a constraint on the supersymmetry

parameter spinor.

Starting from 10-dim supersymmetric Yang-Mills theories, one may wonder about the

higher dimensional Janus theories. For the simplest case with 8 supersymmetries, one can

easily read off from the Lagrangian that such theory can exist in 7-dim spacetime as one

needs 3 scalar fields. For the less supersymmetric case one needs more scalar fields, and

so lower dimension. Additional spatial dependency of the coupling constant also needs

more scalar fields to maintain some supersymmetry. Results in the section 6 and section 7

casshows the maximum spacetime dimension, depending on the cases.

The supersymmetric vacuum of the 8 supersymmetric Janus is governed by the Nahm

equation [24]. Besides the usual Coulomb phase, there can be nontrivial vacuum where

the nonabelian gauge symmetry is completely broken near the planes where the coupling

constant e2(z) can vanish. In addition, one can have 1/2 BPS magnetic monopoles and

charged particles and 1/4 BPS dyons in the Coulomb phase.

In the limit of a sharp interface, one needs various continuity condition on the fields.

Especially one can see that there are mirror charges for magnetic monopoles and electrically

charged particles in the Coulomb phase. An incident massless wave on a sharp face are

partially reflected and partially transmitted without refraction.

In this work we study in detail the properties of 8 supersymmetric Janus Yang-Mills

theories, like the vacuum structure and the BPS configurations. In addition, we reca-

pitulate the less supersymmetric Janus theories found in [11]. Then we classify all the

supersymmetric deformations of the 16 supersymmetric Yang-Mills theories when the cou-

pling constant depends on the two or three spatial coordinates. These higher dimensional

cases tend to have less supersymmetries. We have not explored in the detail the properties

of these less supersymmetric theories. There may be some surprises. Nonsupersymmetric

geometry with a special higher dimensional Janus type has been worked out [18]. Our work

suggests a possibility of supersymmetric Janus geometries where the dilaton field depends

on several coordinates.

When one has a theta term which also depends on the coupling constant, one may

wonder there can be a supersymmetric theory. For example, the Yang-Mills parts of the

Lagrangian can be written as

Tr
1

4e2

(

−FµνFµν + tan αFµν F̃µν
)

, (1.1)
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where tan α = e2θ/8π2. As one can obtain the Janus geometry where both dilaton and ax-

ion changes by the SL(2, R) transformation [13], one expects a supersymmetric Lagrangian

with the theta-term. However, we have not found one yet.

Our analysis of Janus theories are done in the classical level. Once the quantum effect

is included, one expect the coupling constants to run. It is not clear how to define the

infrared limit of the coupling constant. We can choose an arbitrary profile for the coupling

constant e2(z) at the ultraviolet region and maybe the effective coupling constant at the

low energy may take a universal profile.

We would like to point out some gap between Janus solution in supergravity and Janus

field theory. The maximally supersymmetric Janus solution in supergravity has a limited

number of parameters for the dilaton field. This contrasts to the field theory which can have

arbitrary profile of coupling constants. The coupling constant profile can be regarded as an

ultraviolet profile and the quantum corrections would lead to a change of profile in low en-

ergy. However, we do not expect any universal profile at the low energy as the high energy

profile can be chosen to be oscillate. Thus we believe that the Janus field theory provides

a larger set of theories than those described by the supergravity solution, and would like to

find out other alternative origin of Janus field theory. Also, one could ask which is the ex-

actly corresponding CFT for the supersymmetric Janus gravity solution. It would be inter-

esting to learn more about both Janus field theory and gravity solution and their relations.

We worked out the cases with the matter fields. One can start from 6-dim theory

with hypermultiplets, 4-dim theory with chiral multiplets, or 3-dim theory with matter

multiplets. The detail will appear soon.

The plan of the paper is as follows. In section 2, we review the 8 supersymmetric

Janus Yang-Mills theories. In section 3, we study the vacuum structure of this theory.

In section 4, we consider the BPS monopoles and dyons in this theory. In section 5, we

focus on the sharp interface for the the coupling constant. The image charges for the

magnetic monopoles and electric charges are found. The wave propagation and reflection

at the interface is studied. In section 6, less supersymmetric Janus Yang-Mills theories are

found with four real parameters. In section 7, we find the supersymmetric deformation of

the Yang-Mills theories when the coupling constant depends on 2 spacial coordinates. In

section 8, we find the supersymmetric deformation in the case where the coupling constant

depends on all three spatial coordinates.

2. 8 supersymmetric Janus Lagrangian

The 10-dim supersymmetric Yang-Mills Lagrangian is

L0 =
1

4e2
Tr
(

− FMNFMN − 2iλ̄ΓMDMλ
)

, (2.1)

where M,N = 0, 1, 2, . . . , 9. We use the 10-dim notation for convenience with the gamma

matrices ΓM in the Majorana representation and the gaugino field λ is Majorana and Weyl.

The spatial signature is (− + + + · · ·+). The Lagrangian is invariant under the original
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supersymmetric transformation

δ0AM = iλ̄ΓM ǫ , δ0λ =
1

2
ΓMNǫFMN , (2.2)

where the Weyl-condition on the susy parameter ǫ is

Γ012···9ǫ = ǫ. (2.3)

The spinor ǫ is also a Majorana spinor. As we consider 1 + 3 dim spacetime x0, x1, x2, x3,

the remaining spatial gradient ∂M = 0 with M = 4, 5, . . . , 9 and the gauge field AM become

scalar fields φM with M = 4, 5, . . . , 9. The theory has 16 supersymmetries.

In this work, the coupling constant e2 can depend on space-time coordinates. The

original Lagrangian L0 transforms as a total derivative under the original supersymmetric

transformation δ0 so that

δ0L0 = −∂µ

(

1

4e2

)

Tr
(

λ̄ΓMNΓµǫFMN

)

. (2.4)

Fortunately, one can maintain some of supersymmetries if one corrects the supersymmetric

transformation of the gaugino field by δ1λ and also the Lagrangian by additional terms

which depend on the spatial derivatives of the coupling constant. The additional transfor-

mation of the original Lagrangian due to δ1λ would be

δ1L0 = −∂µ

(

1

2e2

)

Tr

(

iλ̄Γµδ1λ − 1

e2
iλ̄ΓMDMδ1λ

)

. (2.5)

Let us start with the case where the coupling constant e2 depends only on the x3 = z

coordinate. The coupling constant e2(z) can be an arbitrary function. The original 16

supersymmetries should be broken to 8 supersymmetries or less [10]. The natural choice

of the additional condition on the spinor ǫ compatible with the Weyl condition (2.3) is

Γ3456ǫ = ǫ. (2.6)

This condition breaks the number of supersymmetries to 8 and the global SO(6) symmetry

which rotates 4, 5, 6, 7, 8, 9 indices to SO(3)×SO(3), each of which rotates 4, 5, 6 and 7, 8, 9

indices respectively.

To cancel some of terms in the zeroth order variation of the original Lagrangian (2.4),

one needs to add a correction to the susy transformation of the gaugino field and the correc-

tions to the original Lagrangian. The correction to the original susy transformation (2.2) is

δ1AM = 0 , δ1λ = e2

(

1

e2

)′
∑

a=4,5,6

Γ3aǫφa, (2.7)

where the prime means d/dz. The correction to the original Lagrangian is made of two

parts. The first correction, which depends on the first order in the derivative of the couple

constant, is given as

L1 =

(

1

4e2

)′

Tr
(

iλ̄Γ456λ − 8iφ4[φ5, φ6]
)

. (2.8)
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The second correction, which is second order in the derivative, is given as

L2 = −e2

2

(

1

e2

)′

∂3

( 1

e2
Tr

∑

a=4,5,6

φ2
a

)

. (2.9)

The total Lagrangian L = L0+L1+L2 is invariant under the corrected susy transformation,

δAM = (δ0 + δ1)AM = iλ̄ΓM ǫ,

δλ = (δ0 + δ1)λ =
1

2
FMNΓMNǫ + e2

(

1

e2

)′

Γ3aǫφa. (2.10)

The susy parameter ǫ is constant in spacetime. There is no requirement on the space

dependence of the coupling constant as long as it is smooth.

The total Lagrangian L = L0 +L1 +L2 becomes somewhat simpler with change of the

field variables as noted in [11]. We divide φI , I = 4, 5, . . . , 9 to two groups so that

φ̃a ≡ 1

e2
φa, (a = 4, 5, 6), φi = φi (i = 7, 8, 9). (2.11)

The whole Lagrangian L becomes

L =
1

4e2
Tr
(

− FµνFµν − 2DµφiDµφi − 2e4Dµφ̃aDµφ̃a

)

+
1

4e2
Tr
(

[φi, φj ]
2 − 2e4[φi, φ̃a]

2 + e8[φ̃a, φ̃b]
2
)

− i

2e2
Tr
(

λ̄ΓµDµλ − iλ̄Γi[φi, λ] − ie2λ̄Γa[φ̃a, λ]
)

+

(

1

4e2

)′

Tr
(

λ̄Γ456λ − 8ie6φ̃4[φ̃5, φ̃6]
)

. (2.12)

The combined susy transformation (2.10) becomes

δAµ = iλ̄Γµǫ, δφ̃a =
1

e2
λ̄Γaǫ, δφi = λ̄Γiǫ,

δλ =

(

1

2
FµνΓµν + e2Dµφ̃aΓ

µa + DµφiΓ
µi

−ie2[φ̃a, φi]Γ
ai − i

2
e4[φ̃a, φ̃b]Γ

ab − i

2
[φi, φj ]Γ

ij

)

ǫ. (2.13)

We can choose the gauge group to be any simple Lie group G.

We consider the case where the coupling constant e2(z) remain positive everywhere

except some isolated planes defined by z = zr, r = 1, 2, . . . p where e2(z) vanishes. While

we expect the field φI to be continuous and differentiable everywhere, we do not expect

φ̃a = φa/e
2 to be finite and continuous across the zero planes of the coupling constant.

This would be an important point in the study of the vacuum structure.

If the coupling e2(z) is an even function of z, the Lagrangian is symmetric under the

following Z2 transformation

z → −z , Az → −Az(−z) , φ̃a → −φ̃a (a = 4, 5, 6) , λ → Γ3456λ. (2.14)
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On the other hand, the coupling constant e2(z) can interpolate a strong coupling regime

with a weak coupling regime. For example, we can choose the coupling constant profile to be

e2(z)

4π
=

4π

e2(−z)
. (2.15)

The electric coupling and magnetic coupling constants are exchanged as one crosses the

interface. In this case, the spacial reflection (2.14) exchanges the electric and magnetic

sectors.

3. Vacuum structure

Let us consider the minimum of the bosonic energy density. At the minimum of the energy,

the gauge field strength vanishes and the gauge field Aµ is chosen to be zero in a gauge.

One can allow the usual Coulomb phase where the scalar fields φi and φ̃a are homogeneous

and diagonal. The Janus theory may allow additional vacuum structure, as there are

corrections to the original Lagrangian. To see this, let us consider the energy density for

the field φ̃a while showing only x3 = z dependence for the simplicity. The bosonic energy

density becomes

E =
e2

2
Tr

(

(D3φ̃a)
2 − e4

2
[φ̃a, φ̃b]

2

)

− i(e4)′Tr
(

φ̃4[φ̃5, φ̃6]
)

=
e2

2
Tr

(

D3φ̃a +
e2

2
ǫabci[φ̃b, φ̃c]

)2

− iTr
(

e4φ̃4[φ̃5, φ̃6]
)′

. (3.1)

Thus the energy functional is bounded below at zero energy if the boundary term vanishes.

The classical vacuum configurations with zero energy satisfy

Aµ = 0, ∂µφi =0, ∂0,1,2φ̃a =0, [φi, φj ]=0, [φi, φ̃a]=0, (3.2)

D3φ̃a+
e2

2
ǫabci[φ̃b, φ̃c] = 0. (3.3)

The last equation is true whenever e2 6= 0. The vacuum configurations preserve all the

supersymmetries, as the gaugino transformation (2.13) becomes

δλ = e2Γ0a

(

D3φ̃a +
ie2

2
ǫabc[φ̃b, φ̃c]Γ

3456

)

ǫ = 0. (3.4)

The contribution of the boundary term to the energy functional is given by

e4(z)F(z)
∣

∣

∣

+∞

−∞

, (3.5)

where

F(z) = −iTr
(

φ̃4[φ̃5, φ̃6]
)

. (3.6)

Using the vacuum equation (3.3), we get

d

dz
F(z) = e2Tr

(

− [φ̃4, φ̃5]
2 − [φ̃5, φ̃6]

2 − [φ̃6, φ̃4]
2
)

≥ 0, (3.7)
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and so the function F(z) is non-decreasing in z in the interval where e2(z) is nonvanishing.

Thus the boundary term would not vanish if e2(z) is nonzero everywhere, and F(z) is

nonzero somewhere. However we can have nontrivial nonabelian vacuum such that the

boundary contributions vanish when e2 vanishes somewhere, including z = ±∞.

To solve the vacuum equation (3.3), let us introduce a new variable u such that

du = e2(z)dz, or u =

∫ z

0
dz e2(z). (3.8)

In the gauge Az = 0, the vacuum equation becomes

e2

(

dφ̃a

du
+

i

2
ǫabc[φ̃b, φ̃c]

)

= 0. (3.9)

When e2 6= 0, the above equation is the Nahm equation for magnetic monopoles [24].

However at points where e2(z) = 0, the Nahm equations does not need to hold. As before

we assume that e2(z) vanishes at finite number of points zr, and we divides the z = x3

line into finite number of intervals separated by zero points zr. The fields φ̃a need not be

continuous nor finite at these zero points as long as the original unscaled field φa is so. Thus

we are solving the Nahm at each interval. For each interval between zero coupling constant

points zr, one has to impose the Nahm equations in u variables. In addition we require the

contribution of the boundary term to be finite, continuous at zr, and vanishes at ±∞.

To be more concrete let us focus on the gauge group SU(2). The general solutions of

the Nahm equation can be obtained by using the ansatz,

φ̃3+a = fa(u)
σa

2
(3.10)

with the Pauli matrices σa and no sum over the indices a = 1, 2, 3. The vacuum equation

becomes

f ′

1 = f2f3, f ′

2 = f3f1, f ′

3 = f1f2, (3.11)

whose solutions are given in terms of the Jacobi elliptic functions, as follows:

f1(u; k,D, u0) ≡ −Dcnk[D(u − u0)]

snk[D(u − u0)]
,

f2(u; k,D, u0) ≡ −Ddnk[D(u − u0)]

snk[D(u − u0)]
,

f3(u; k,D, u0) ≡ − D

snk[D(u − u0)]
, (3.12)

where k ∈ [0, 1] is the elliptic modulus, and two parameters D ≥ 0, u0 are arbitrary. This

solution blows up when snk goes to zero. The zeros of snk(w) is w = 0, 2K(k) where K(k)

is the complete elliptic integral of the first kind. The function K(k) goes to infinite at the

boundary k = 1. The above solution in this limit becomes

f1(u; k = 1,D, u0) = −D cosh(D(u − u0))

sinh(D(u − u0))
,

f2(u; k = 1,D, u0) = f3(u; k = 1,D, u0) = − D

sinhD(u − u0)
. (3.13)
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When D 6= 0 nor K(k) = ∞, the general solution (3.12) blows up at finite u. If there is

no point including infinities where e2 vanishes, one can see there is no nontrivial vacuum

solution.

Let us now consider the case where e2 vanishes only one point, say at z = 0, and

remain positive and finite everywhere else. We do not need the detail profile of the coupling

constant e2(z) for our discussion. The parameter u in eq. (3.8) is negative for z < 0 and

positive for z > 0. We have two semi-infinite intervals and so need the above solution (3.13)

for these two intervals. We could choose independent parameters for two interval and so

the vacuum solution becomes

φ̃3+a =

{

fa(u; k = 1,D−, u−)σa

2 for z < 0

fa(u; k = 1,D+, u+)σa

2 for z > 0
, (3.14)

where u− > 0, u+ < 0. The range of two parameters u± is chosen so that φ̃a does not

diverge anywhere. If we have chosen u− = 0, we would have divergent contribution to the

boundary term at 0− as φa ∼ 1/(e2(t)t)σa near z = 0−. The asymptotic values of φ̃ at the

spatial infinity becomes

φ̃a(z = ±∞) = −δa4D±

σ1

2
. (3.15)

Not only the asymptotic value D± can be different, they can vanish. Thus, one can have

nontrivial vacuum even in the symmetric phase. The above solution (3.14) becomes abelian

in asymptotic region (z = ±∞) but nonabelian close to the zero plane z = 0. The SU(2)

gauge symmetry is completely broken near the wall but becomes abelian when D± 6= 0 or

fully restored when D± = 0 at the boundaries z = ±∞.

When there are more planes where e2(z) vanishes, one can have a richer vacuum

structure. For each finite interval between zeros, the full general solution (3.12) will play

a role. The above solution (3.14) becomes abelian in asymptotic region (z = ±∞) but

nonabelian close to the zero planes z = zr. The SU(2) gauge symmetry is completely

broken near the wall but becomes abelian or fully restored at the boundaries. There are

several parameters characterizing the vacuum, besides the global SU(2) rotation of three

scalar fields φ̃a. The detailed physics in a given vacuum is intriguing but will not be pursued

in this work.

4. BPS objects

The BPS configurations are those which respect some supersymmetries. Let us consider

the supersymmetric transformation (2.10) of the gaugino field. In each vacuum one can

study the BPS configurations. The supersymmetry preserved by the BPS configurations

should be compatible with the original supersymmetric condition, Γ3456ǫ = ǫ. We will

consider the following two conditions on the supersymmetric parameter, ǫ;

Γ1234ǫ = αǫ, Γ07ǫ = βǫ, (4.1)

where α = ±1, β = ±1. The above relations imply that Γ1256ǫ = −αǫ, Γ1289ǫ = βǫ, and

Γ5689ǫ = αβǫ. We could impose only one condition and then the configurations would be

1/2 BPS. If we impose both conditions, the configurations would be 1/4 BPS.
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One may wonder whether there are other possible BPS conditions. As the fields are

Majorana, we cannot introduce, for example, the projection Γ12ǫ = iǫ. Other possible

projections like Γ1256ǫ = ǫ or Γ1289ǫ = ǫ are allowed. But these conditions would lead to

the reduction of the selfdual Yang-Mills equation to 2-spatial direction, which does not

have any obvious nontrivial smooth solution. The above BPS conditions (4.1) are those for

magnetic monopoles and charged W-bosons in non-Janus case and might imply nontrivial

BPS configurations even in the Janus case.

The supersymmetric transformation (2.10) of the gaugino field can be expressed as

δλ = Γp0(Fp0 − Dpφ7Γ
07)ǫ + e2Γ0a(D0φ̃a + i[φ7, φ̃a]Γ

07)ǫ +
∑

i=8,9

Γ0i(D0φi + i[φ7, φi]Γ
07)ǫ

+Γ12(F12−e2D3φ̃4Γ
1234+e4i[φ̃5, φ̃6]Γ

1256+i[φ8, φ9]Γ
1289)ǫ+Γ23(F23−e2D1φ̃4Γ

1234)ǫ

+Γ31(F31−e2D2φ̃4Γ
1234)ǫ+e2Γ15(D1φ̃5+D2φ̃6Γ

1256)ǫ+e2Γ25(D2φ̃5−D1φ̃6Γ
1256)ǫ

+e2Γ35(D3φ̃5 + ie2[φ̃6, φ̃4]Γ
3456)ǫ + e2Γ36(D3φ̃6 + ie2[φ̃4, φ̃5]Γ

3456)ǫ

+Γ18(D1φ8 + D2φ9Γ
1289)ǫ + Γ28(D2φ8 − D1φ9Γ

1289)ǫ

+Γ38(D3φ8 − ie2[φ̃4, φ9]Γ
3489)ǫ + Γ39(D3φ9 + ie2[φ̃4, φ8]Γ

3489)ǫ

+e2Γ58(−i[φ̃5, φ8] − i[φ̃6, φ9]Γ
5689)ǫ + e2Γ59(−i[φ̃5, φ9] + i[φ̃6, φ8]Γ

5689)ǫ

+D0φ7Γ
07ǫ. (4.2)

The susy transformation δλ would vanish for the BPS configurations. After using the BPS

conditions (4.1), δλ = 0 if all terms vanish individually. (It would be interesting to show

that it is also a necessary condition.) Let us consider the magnetic 1/2 BPS equation with

α = 1. We require all terms vanish with β = ±1. The nontrivial part of the equations for

the 1/2 BPS configurations with Γ1234ǫ = ǫ is made of

F12 − e2D3φ̃4 − ie4[φ̃5, φ̃6] = 0, F23 − e2D1φ̃4 = 0, F31 − e2D2φ̃4 = 0,

D3(φ̃5+iφ̃6)−e2[φ̃4, φ̃5+iφ̃6] = 0, (D1 + iD2)(φ̃5 + iφ̃6) = 0. (4.3)

This is a mixed form of the Nahm equation for the vacuum and the old BPS equation for

magnetic monopoles. The 1/4 BPS dyonic magnetic monopole with β = 1 can found also.

The additional BPS equation for dyons in the gauge A0 = φ7 and the ansatz φ8 = φ9 = 0

is simply the Gauss law,

−Dp

(

1

e2
Dpφ7

)

+ e2[φ̃a, [φ̃a, φ7]] = 0. (4.4)

In the abelian Coulomb phase, φ̃5 = φ̃6 = 0 and the above BPS equations become some-

what simpler. (Of course it would be interesting to find whether there is nontrivial BPS

configurations lying beyond the ansatz φ=φ9 = 0. )

For simplicity, let us consider the energy bound in the abelian Coulomb vacuum.

Keeping only nontrivial terms, we express the energy functional as

H =

∫

d3x
1

2e2
Tr
(

(Fp0−Dpφ7)
2+e4(D0φ̃4−i[φ7, φ̃4])

2+(Bp−e2Dpφ̃4)
2
)

+Qe+Qm, (4.5)
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where Bp = 1
2ǫpklF

kl and

Qe =

∫

d3x∂pTr

(

1

e2
Fp0φ7

)

, Qm =

∫

d3x∂pTr(Bpφ̃4), (4.6)

are the electric and magnetic energy contributions, respectively. In the Janus field theory,

the coupling constant e2 depending on the spatial coordinates and so it is much harder to

solve the BPS equations even for a single magnetic monopole. Magnetic monopoles are

topologically characterized in usual abelian vacuum, but it is not clear whether it is so in

a nonabelian vacuum.

5. A sharp interface

5.1 BPS monopoles and point electric charge

Suppose the coupling constant e2(z) changes from one value to another at a sharp interface

so that

e(z) =

{

e1 for z > 0

e2 for z < 0
. (5.1)

Such a limit can be obtained by shrinking the interface region to a plane. As there is

no additional source term at the interface, we get the continuity conditions of the various

fields. The continuous ones are the following fields and their covariant derivatives:

F01, F02, F12,
F03

e2
,
F23

e2
,
F31

e2
,

φ̃a,D1φ̃a,D2φ̃a, e
2D3φ̃a, a = 4, 5, 6

φi,D1φi,D2φi,
D3φi

e2
, i = 7, 8, 9. (5.2)

Thus naturally we can assume the continuity condition for the infinitesimal gauge function

Λ and its derivatives D1Λ,D2Λ,D3Λ/e2.

For simplicity, we consider the SU(2) gauge theory which is broken spontaneous to

U(1) subgroup by the Higgs expectation values at the vacuum,

〈

φ̃4

〉

= ṽ
σ3√
2
. (5.3)

Note that the expectation value of the original field variable φ4 = e2φ̃4 makes a jump at the

interface. The diagonal components of the fields will be massless and off-diagonal fields will

be massive. Let us try to solve the BPS equations in the abelian limit where the nonabelian

core size vanishes. For a single monopole at z = a > 0, we get the BPS configuration

Bi = e2Diφ̃4 =







(x,y,z−a)
r3
+

+
e2
1
−e2

2

e2
1
+e2

2

(x,y,z+a)
r3
−

, z > 0

2e2
2

e2
1
+e2

2

(x,y,z−a)
r3
+

, z < 0
. (5.4)
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Here we dropped the group factor σ3/
√

2 for the simplicity. The continuous scalar field φ̃4

becomes

φ̃4 =















ṽ − 1
e2
1
r+

− e2
1−e2

2

e2
1
(e2

1
+e2

2
)

1
r−

, z > 0

ṽ − 2
e2
1
+e2

2

1
r+

, z < 0

. (5.5)

The total magnetic flux near z = a is 4π as expected. In the region z > 0 where the

monopole exists, the total field is that of the magnetic monopole and that of the mirror im-

age at z = −a. The total magnetic flux 4π at the spacial infinity consists of the 4πe2
1/(e

2
1 +

e2
2) flux from the z > 0 hemisphere and the 4πe2

2/(e
2
a + e2

2) flux from the z < 0 hemisphere.

Let us now turn off the φ̃4 expectation value and turn on the new expectation value

〈φ7〉 = u
σ3√

2
. (5.6)

Let us put an unit electric charge at point (x, y, z) = (0, 0, a > 0). The Gauss law is

simplified as ∇i(Ei/e
2) = ρe whose spatial integration is quantized as integer. Ignoring the

nonabelian core and dropping the group factor σ3/
√

2 for the simplicity, we get the BPS

point charge configuration as

Ei = Diφ7 =







e2
1

4π

(

(x,y,z−a)
r3
+

+
−e2

1
+e2

2

e2
1
+e2

2

(x,y,z+a)
r3
−

)

, z > 0

e2
1

4π

2e2
2

e2
1
+e2

2

(x,y,z−a)
r3
+

, z < 0
. (5.7)

where r2
± = x2 + y2 + (z ∓ a)2. Note that E1, E2, E3/e

2 are continuous along the interface.

The continuous scalar field becomes

φ7 =















u − e2
1

4π

(

1
r+

+
−e2

a
+e2

2

e2
1
+e2

2

1
r−

)

, z > 0

u − 2e2
1
e2
2

4π(e2
1
+e2

2
)

1
r+

, z < 0

. (5.8)

The total electric charge is the unity near z = 1 and remains so at the spatial infinity as it

is the sum e2
2/(e

2
1 + e2

2), (z > 0) and e2
1/(e

2
1 + e2

2), z < 0.

5.2 Reflection and transmission of massless waves

Let us consider now a massless wave propagating toward the interface (5.1) of the two

coupling constant from z > 0 region. The fields and their derivatives in (5.2) should be

continuous cross the interface z = 0. Let us use the vector notation E = (F10, F20, F30),

and B = (F23, F31, F12) for the electromagnetic fields. A part of the incident wave will be

reflected and the rest may get refracted or transmitted. Let us call the electromagnetic

field of the incident wave to be E,B, the reflected wave to be E′′,B′′ and the transmitted
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wave to be E′,B′. The continuity equations at z = 0 are

(

E + E′′ − E′
)

× ẑ = 0,
(

B + B′′ − B
)

· ẑ = 0,
(

E + E′′

e2
1

− E′

e2
2

)

· ẑ = 0,

(

B + B′′

e2
1

− B′

e2
2

)

× ẑ = 0. (5.9)

The space-time dependence waves would be e−iwt+k·x, e−iwt+k′′·x, and e−iwt+k′·x for the

incident, reflected, and transmitted waves, respectively. The wave equation at each region

and the above continuity equations imply that

w = |k| = |k′′| = |k′|, k = k′, (k + k′) × ẑ = 0. (5.10)

Thus the transmitted wave is not refracted at all. After taking out the space-time depen-

dence, we can express the electric fields of the reflected and transmitted waves in terms

of the electric field of the incident wave. While the relation will depends on whether the

wave has transverse electric (that is, transverse to the incident plane defined by k and

ẑ), or transverse magnetic, both cases has the same relation between the magnitude of

the electric field at z = 0, as E′′
0 = rE0, E

′
0 = tE0 where the reflection and transmission

magnitudes are

r =

∣

∣

∣

∣

e2
1 − e2

2

e2
1 + e2

2

∣

∣

∣

∣

, t =
2e2

2

e2
1 + e2

2

. (5.11)

For the vector, one should be careful about the sign, which can be easily fixed by the

continuity equations. The same reflection and transmission magnitudes apply to the scalar

fields φi, i = 7, 8, 9. For the scalar field φ̃a, the same reflection magnitude applies but the

transmission magnitude becomes t = 2e2
1/(e

2
1 + e2

2).

6. Additional Susy breaking Janus

In this section we are still interested in the case where the coupling constant e2(z) depends

only on one spatial coordinate. We can impose additional constraints on the susy parame-

ters ǫ which is compatible with what we have already imposed. There are several of them

and so one can break the susy to 1/4 or 1/8, which introduces some free parameters in the

interface Lagrangian. We easily recover the results in ref. [11]. As shown in this reference,

our study exhaust all possibilities with some supersymmetries. Thus the minimum one will

have two supersymmetries for the case where the coupling constant depends only on one

spatial direction e2(z). The compatible conditions including one in (2.6) on the 10-dim

Majorana Weyl spinor ǫ are

Γ3456ǫ = ǫ , Γ3489ǫ = −ǫ , Γ3597ǫ = −ǫ , Γ3678ǫ = −ǫ. (6.1)

As the product of the above four conditions is an identity, there are only three independent

conditions, breaking the supersymmetry to 1/8th or two supersymmetries.
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To cancel δ0L0 in (2.5), we choose the first correction to the Lagrangian to be

L1 =

(

1

4e2

)′

Tr
(

iλ̄(c0Γ
456 − c1Γ

489 − c2Γ
597 − c3Γ

678)λ

−8i
(

c0φ4[φ5, φ6] − c1φ4[φ8, φ9] − c2φ5[φ9, φ7] − c3φ6[φ7, φ8])
)

, (6.2)

where real parameters ci satisfy

c0 + c1 + c2 + c3 = 1. (6.3)

The correction to the susy transformation (2.2) is

δ1λ = e2

(

1

e2

)′

Γ3

(

c0

∑

a=4,5,6

Γaφa + c1

∑

a=4,8,9

Γaφa

+c2

∑

a=5,9,7

Γaφa + c3

∑

a=6,7,8

Γaφa

)

ǫ. (6.4)

The second order correction of the Lagrangian is chosen to be

L2 = −e2

2

(

1

e2

)′

∂3

(

1

e2
Tr

(

c0

∑

a=4,5,6

φ2
a + c1

∑

a=4,8,9

φ2
a + c2

∑

a=5,9,7

φ2
a (6.5)

+c3

∑

a=6,7,8

φ2
a

))

+
e2

2

(

1

e2

)′2

Tr
(

(c0+c1)(c2+c3)(φ
2
4+φ2

7)

+(c0+c2)(c1+c3)(φ
2
5+φ2

8)+(c0+c3)(c1+c2)(φ
2
6+φ2

9)
)

.

As noted in ref. [11], notice that when c0 = c1 = c2 = c3 = 1/4, there is an enhanced

global symmetry SU(3) with 1/8 supersymmetry. For c0 = c1 = 1/2 and c2 = c3 = 0, there

is 1/4 supersymmetry with enhanced global symmetry SO(2) × SO(2).

7. Multifaced interfaces in 2,3 dimensions

7.1 e2(y, z) case

Let us first start with the case where the coupling constant e2(y, z) depends on only two

coordinates. There exist only two independent, modulo rotation, sets of the compatible

supersymmetry conditions which are

Γ2789ǫ = ǫ, Γ3456ǫ = ǫ, (7.1)

Γ2459ǫ = −ǫ, Γ3456ǫ = ǫ. (7.2)

Each condition breaks the supersymmetry to 1/4. One can break the supersymmetry

further to 1/8 by imposing both conditions (7.1) and (7.2) at the same time. Also one can

impose additional compatible supersymmetry condition

Γ2567ǫ = −ǫ, Γ3456ǫ = ǫ. (7.3)
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Imposing these three mutually independent and compatible conditions (7.1), (7.2), (7.3)

breaks the supersymmetry to the minimal one 1/16. Note that the conditions (7.2)

and (7.3) are related by a rotation. These three conditions imply

Γ2648ǫ = Γ3489ǫ = Γ3597ǫ = Γ3678ǫ = −ǫ. (7.4)

These conditions include the conditions (6.1) in the previous section.

We extend the result in the previous section. To cancel δ0L0, we choose choose the

first order correction to the Lagrangian to be

L1=∂2

(

1

4e2

)

Tr
(

iλ̄(b0Γ
789 − b1Γ

567 − b2Γ
648 − b3Γ

459)λ

−8i
(

b0φ7[φ8, φ9] − b1φ5[φ6, φ7] − b2φ6[φ4, φ8] − b3φ4[φ5, φ9])
)

+∂3

(

1

4e2

)

Tr
(

iλ̄(c0Γ
456 − c1Γ

489 − c2Γ
597 − c3Γ

678)λ

−8i
(

c0φ4[φ5, φ6] − c1φ4[φ8, φ9] − c2φ5[φ9, φ7] − c3φ6[φ7, φ8])
)

, (7.5)

where real parameters bi, ci satisfy

b0 + b1 + b2 + b3 = 1, c0 + c1 + c2 + c3 = 1. (7.6)

The correction to the supersymmetric transformation (2.6) is

δ1λ = e2∂2

(

1

e2

)

Γ2

(

b0

∑

a=7,8,9

Γaφa + b1

∑

a=5,6,7

Γaφa + b2

∑

a=6,4,8

Γaφa + b3

∑

a=4,5,9

Γaφa

)

ǫ

+e2∂3

(

1

e2

)

Γ3

(

c0

∑

a=4,5,6

Γaφa+c1

∑

a=4,8,9

Γaφa+c2

∑

a=5,9,7

Γaφa+c3

∑

a=6,7,8

Γaφa

)

ǫ. (7.7)

The additional correction to the Lagrangian is made of

L2=−e2

2
∂2

(

1

e2

)

∂2

(

1

e2
Tr

(

b0

∑

a=7,8,9

φ2
a+b1

∑

a=5,6,7

φ2
a+b2

∑

a=6,4,8

φ2
a+b3

∑

a=4,5,9

φ2
a

))

−e2

2
∂3

(

1

e2

)

∂3

(

1

e2
Tr

(

c0

∑

a=4,5,6

φ2
a+c1

∑

a=4,8,9

φ2
a+c2

∑

a=5,9,7

φ2
a+c3

∑

a=6,7,8

φ2
a

))

. (7.8)

One needs additional correction to the Lagrangian which are made of mixed terms,

L3 =
e2

2

(

∂2

(

1

e2

))2

Tr
(

(b0 + b1)(b2 + b3)(φ
2
7 + φ2

4) + (b0 + b2)(b1 + b3)(φ
2
8 + φ2

5)

+(b0+b3)(b1+b2)(φ
2
9+φ2

6)
)

+
e2

2

(

∂3

(

1

e2

))2

Tr
(

(c0+c1)(c2+c3)(φ
2
4+φ2

7)

+(c0 + c2)(c1 + c3)(φ
2
5 + φ2

8) + (c0 + c3)(c1 + c2)(φ
2
6 + φ2

9)
)
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−
(

∂2∂3

(

1

e2

)

− e2∂2

(

1

e2

)

∂3

(

1

e2

))

Tr
(

(b0 + b1 + c0 + c1 − 1)φ4φ7

+(b0+b2+c0+c2−1)φ6φ8+(b0+b3+c0+c3−1)φ7φ9

)

. (7.9)

The total Lagrangian L0 + L1 + L2 + L3 is invariant under the corrected supersymmetric

transformation. Note that when e2 = f(y)g(z) so that it is factorizable, the last term

vanishes. When ba = ca = 1/4 for all a = 0, 1, 2, 3, there is SO(3) symmetry which rotates

φ4,5,6 and φ7,8,9 at the same time. We think our Lagrangian is the most general on in the

2-dim case.

7.2 e2(x, y, z) case

When the coupling constant depends on all three coordinates e2(x, y, z), there are two

independent susy conditions

Γ1467ǫ = Γ2475ǫ = Γ3456ǫ = ǫ, (7.10)

Γ1458ǫ = Γ2468ǫ = Γ3478ǫ = ǫ. (7.11)

One can break either susy further to 1/16 by imposing the above two conditions (7.10)

and (7.11) together. These two conditions imply Γ1234ǫ = Γ5678ǫ = −ǫ. We choose the first

correction to the Lagrangian to be

L1 = ∂1

(

1

4e2

)

Tr

(

iλ̄Γ4(a1Γ
67 + a2Γ

58)λ − 8iφ4(a1[φ6, φ7] + a2[φ5, φ8])

)

+∂2

(

1

4e2

)

Tr

(

iλ̄Γ4(b1Γ
75 + b2Γ

68)λ − 8iφ4(b1[φ7, φ5]) + b2[φ6, φ8])

)

+∂3

(

1

4e2

)

Tr

(

(iλ̄Γ4(c1Γ
56 + c2Γ

78)λ − 8iφ4(c1[φ5, φ6] + c2[φ7, φ8])

)

, (7.12)

where

a1 + a2 = 1, b1 + b2 = 1, c1 + c2 = 1. (7.13)

We choose the correction for the susy transformation to be

δ1λ = e2∂1

(

1

e2

)

Γ1

(

a1

∑

a=4,6,7

φaΓ
a + a2

∑

4,5,8

φaΓ
a

)

ǫ

+e2∂2

(

1

e2

)

Γ2

(

b1

∑

a=4,7,5

φaΓ
a + b2

∑

a=4,6,8

φaΓ
a

)

ǫ

+e2∂3

(

1

e2

)

Γ3

(

c1

∑

a=4,5,6

φaΓ
a + c2

∑

a=4,7,8

φaΓ
a

)

ǫ. (7.14)
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The additional Lagrangian becomes

L2 = −e2

2
∂1

(

1

e2

)

∂1Tr
(

a1(φ
2
4 + φ2

6 + φ2
7) + a2(φ

2
4 + φ2

5 + φ2
8)
)

−e2

2
∂2

(

1

e2

)

∂2Tr
(

b1(φ
2
4 + φ2

5 + φ2
7) + b2(φ

2
4 + φ2

6 + φ2
8)
)

−e2

2
∂3

(

1

e2

)

∂3Tr
(

c1(φ
2
4 + φ2

5 + φ2
6) + c1(φ

2
4 + φ2

7 + φ2
8)
)

. (7.15)

The final mixed correction to the Lagrangian is

L3 =
e2

2

(

a1a1

(

∂1

(

1

e2

))2

+b1b2

(

∂2

(

1

e2

))2

+c1c2

(

∂3

(

1

e2

))2
)

Tr
(

φ2
5+φ2

6+φ2
7+φ2

8

)

+

(

∂1∂2

(

1

e2

)

− e2∂1

(

1

e2

)

∂2

(

1

e2

))

Tr
(

(a2 − b1)φ5φ6 + (a1 − b1)φ7φ8

)

+

(

∂2∂3

(

1

e2

)

− e2∂2

(

1

e2

)

∂3

(

1

e2

))

Tr
(

(b2 − c1)φ6φ7 + (b1 − c1)φ5φ8

)

+

(

∂3∂1

(

1

e2

)

− e2∂3

(

1

e2

)

∂1

(

1

e2

))

Tr
(

(c2 − a1)φ7φ5 + (c1 − a1)φ6φ8

)

. (7.16)

Note that a2 − b1 = b2 − a1 = (a2 + b2 − a1 − b1)/2 and a1 − b1 = (a1 − b1 − a2 + b2)/2.

The last three terms vanish if e2(x, y, z) has the factorizable spatial dependency. When

a1 = a2 = b1 = b2 = c1 = c2 = 1/2, we have SO(4) symmetry which rotates φ5,6,7,8. If

the coupling constant depends only on the radial variable e2(
√

x2 + y2 + z2), there will be

a spatial rotational symmetry. Our analysis on the constraint on the spinor is the most

general and so our Lagrangian is the most general Lagrangian in 3-dim case.
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A. Moving Janus

Let us consider the space-time dependent coupling constant e2(x+ t). The supersymmetric

condition on the constant spinor parameter is

Γ01ǫ = ǫ.

Under the infinitesimal supersymmetric transformation, the original Lagrangian transforms

as in eq. (2.4). Since ∂0e
2 = ∂1e

2 and ǭ(Γ0 + Γ1) = 0, the Lagrangian is invariant under

1/2 of 16 supersymmetries satisfying the above condition. We can mix this time-dependent

Janus with other Janus, preserving some supersymmetry if the supersymmetry conditions

are compatible.
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